|
|
|
求解两类优化问题的混合进化算法及其应用 |
|
论文目录 |
|
摘要 | 第1-6页 | ABSTRACT | 第6-13页 | 第一章 绪论 | 第13-34页 | ·前言 | 第13-15页 | ·无约束优化方法的发展及研究现状 | 第15-28页 | ·基于梯度(或导数)的方法 | 第15-19页 | ·直接搜索法 | 第19-21页 | ·进化算法 | 第21-25页 | ·无约束优化方法研究现状 | 第25-28页 | ·约束优化方法的发展及研究现状 | 第28-33页 | ·传统的优化方法 | 第28-31页 | ·计算智能中的进化算法 | 第31页 | ·约束优化方法研究现状 | 第31-33页 | ·本文的研究内容和结构安排 | 第33-34页 | 第二章 求解无约束优化问题的混合进化算法 | 第34-58页 | ·问题的描述及求解方法 | 第34-35页 | ·自适应梯度指导交叉的混合遗传算法 | 第35-48页 | ·自适应梯度指导交叉思想 | 第36-38页 | ·算法描述 | 第38-41页 | ·混沌序列产生初始种群 | 第38-39页 | ·梯度指导交叉 | 第39页 | ·自适应变异算子 | 第39-40页 | ·选择操作 | 第40页 | ·算法步骤 | 第40页 | ·时间复杂度分析 | 第40-41页 | ·算法收敛性分析 | 第41-42页 | ·数值实验及分析 | 第42-48页 | ·测试函数和参数设置 | 第42-43页 | ·实验结果及分析 | 第43-46页 | ·目标个体数目对算法的影响 | 第46-47页 | ·参数k_1对算法的影响 | 第47-48页 | ·动态分级的混合粒子群优化法 | 第48-57页 | ·标准粒子群优化算法 | 第49-50页 | ·混合粒子群优化算法 | 第50-52页 | ·算法原理 | 第50-51页 | ·混合算法步骤和流程 | 第51-52页 | ·算法的时间复杂度分析 | 第52页 | ·分级算法的具体实现 | 第52-53页 | ·混沌粒子群优化算法实现全局搜索 | 第52-53页 | ·单纯形粒子群优化算法实现局部搜索 | 第53页 | ·数值仿真与分析 | 第53-57页 | ·测试函数和参数设置 | 第53页 | ·实验结果及分析 | 第53-57页 | ·本章小结 | 第57-58页 | 第三章 求解约束优化问题的混合进化算法 | 第58-101页 | ·约束优化问题的描述 | 第58-60页 | ·基于进化算法的约束处理技术 | 第60-66页 | ·惩罚函数法 | 第60-61页 | ·区分可行解与不可行解法 | 第61-62页 | ·多目标法 | 第62-65页 | ·其他方法 | 第65-66页 | ·聚类佳点集交叉的约束优化混合遗传算法 | 第66-86页 | ·佳点集相关理论 | 第67-68页 | ·算法描述 | 第68-78页 | ·种群初始化 | 第68-70页 | ·聚类佳点集多父代交叉 | 第70-73页 | ·非均匀变异 | 第73-74页 | ·聚类局部搜索 | 第74-75页 | ·约束处理技术 | 第75-78页 | ·算法步骤 | 第78页 | ·算法的时间复杂度 | 第78页 | ·数值实验与分析 | 第78-86页 | ·约束优化测试函数及参数设置 | 第78-79页 | ·算法的整体性能分析 | 第79-81页 | ·与其他算法的比较 | 第81-83页 | ·参数m对算法性能的影响 | 第83-84页 | ·参数f_p对算法性能的影响 | 第84-86页 | ·协同增广LAGRANGE乘子的混合粒子群优化算法 | 第86-100页 | ·增广Lagrange乘子法 | 第86-87页 | ·算法描述 | 第87-92页 | ·算法的外层迭代 | 第87-88页 | ·算法的内层迭代 | 第88-90页 | ·算法步骤 | 第90-92页 | ·算法收敛性分析 | 第92-94页 | ·数值实验与分析 | 第94-96页 | ·约束优化测试函数及参数设置 | 第94页 | ·算法的整体性能分析 | 第94-95页 | ·与其他算法的比较 | 第95-96页 | ·工程约束优化应用 | 第96-100页 | ·压力容器优化设计问题 | 第97-98页 | ·焊接梁优化设计问题 | 第98-99页 | ·拉压弹簧优化设计问题 | 第99-100页 | ·本章小结 | 第100-101页 | 第四章 非线性模型参数优化的混合进化算法 | 第101-119页 | ·概述 | 第101-102页 | ·RBF神经网络模型参数优化方法 | 第102-103页 | ·RBF神经网络结构 | 第103-104页 | ·基于混合遗传算法的RBF神经网络 | 第104-109页 | ·混合编码及改进适应度 | 第105-106页 | ·最速下降法 | 第106-107页 | ·交叉和变异 | 第107-108页 | ·最优停止训练规则 | 第108-109页 | ·算法步骤 | 第109页 | ·HGA-RBF神经网络模型的应用 | 第109-118页 | ·预测Lorenz吸引子时间序列 | 第109-112页 | ·预测Mackey-Glass时间序列 | 第112-115页 | ·预测Wolf太阳黑子时间序列 | 第115-116页 | ·预测加拿大山猫时间序列 | 第116-118页 | ·本章小结 | 第118-119页 | 第五章 石油生产过程设定点优化的混合进化算法 | 第119-149页 | ·概述 | 第119页 | ·石油生产过程数学模型 | 第119-122页 | ·石油生产过程设定点优化问题 | 第122-124页 | ·动态选择与替换策略的多目标约束优化进化算法 | 第124-138页 | ·约束处理方法 | 第124-125页 | ·非劣个体动态选择与替换策略 | 第125-126页 | ·交叉和变异操作 | 第126-127页 | ·算法步骤 | 第127-128页 | ·算法时间复杂度分析 | 第128页 | ·数值实验与分析 | 第128-130页 | ·实例仿真 | 第130-138页 | ·基于混合交叉机制的约束优化遗传算法 | 第138-148页 | ·适应度函数 | 第139-140页 | ·交叉操作 | 第140-141页 | ·变异操作 | 第141页 | ·选择操作 | 第141-142页 | ·最好不可行解保护和替换机制 | 第142页 | ·算法步骤 | 第142-143页 | ·算法时间复杂度分析 | 第143页 | ·数值实验与分析 | 第143-145页 | ·实例仿真 | 第145-148页 | ·本章小结 | 第148-149页 | 第六章 结论与展望 | 第149-151页 | ·结论 | 第149-150页 | ·展望 | 第150-151页 | 参考文献 | 第151-166页 | 附录 | 第166-175页 | 致谢 | 第175-176页 | 攻读学位期间主要的研究成果 | 第176-177页 |
|
|
|
|
论文编号BS47619,这篇论文共177页 会员购买按0.35元/页下载,共需支付61.95元。 直接购买按0.5元/页下载,共需要支付88.5元 。 |
|
|
我还不是会员,注册会员!
会员下载更优惠!充值送钱! |
我只需要这篇,无需注册!
直接网上支付,方便快捷! |
|
|
|
版权申明:本目录由www.jylw.com网站制作,本站并未收录原文,如果您是作者,需要删除本篇论文目录请通过QQ或其它联系方式告知我们,我们承诺24小时内删除。 |
|
|