|
|
|
利用神经网络实现地形面的曲面构造
|
|
【免费水利论文】摘要:提出用神经网络方法解决地形面的曲面构造问题,在Back Propagation(简称BP)算法的基础上,吸取了模拟退火算法的优点,神经网络的学习按概率随机接受一个不成功训练值的方法,解决了BP算法容易陷入局部极小点的问题。通过对黄河下游河滩地形面的模拟证明,此方法可解决地形面的曲面构造问题。 关键词:地形面 自由曲面 神经网络 BP算法 模拟退火 1 引言 在水利及土木工程中经常会遇到地形面,地形面是典型的空间自由曲面,地形面在给出时,往往只给出一些反映地形、地貌特征的离散点,而无法给出描述地形面的曲面方程。然而有时需要对地形面进行描述,或者当给出的地形面的点不完整时,需要插补出合理的点。以往大多用最小二乘法或其它曲面拟合方法如三次参数样条曲面、Bezier曲面或非均匀有理B样条曲面等,这些拟合方法的缺点是:型值点一旦给定,就不能更改,否则必须重新构造表达函数;在构造曲线曲率变化较大或型值点奇异时,容易产生畸变,有时需要人为干预;此外,这些方法对数据格式都有要求。 神经网络技术借用基于人类智能(如学习和自适应)的模型、模糊技术方法,利用人类的模糊思想来求解问题,在许多领域优于传统技术。用神经网络进行地形面构造,只要测量有限个点(可以是无序的),不需要其它更多的地形面信息和曲面知识,当地形面复杂或者是测量数据不完整时,用神经网络方法更具优势,而且还可以自动处理型值点奇异情况。 本文提出用BP神经网络结合模拟退火算法进行地形面的曲面构造。 2 模型与算法的选择 为了对地形面进行曲面构造,首先要有一些用于神经网络训练的初始样本点,对所建立的神经网络进行学习训练,学习训练的本质就是通过改变网络神经元之间的连接权值,使网络能将样本集的内涵以联结权矩阵的方式存储起来,从而具有完成某些特殊任务的能力。权值的改变依据是样本点训练时产生的实际输出和期望输出间的误差,按一定方式来调整网络权值,使误差逐渐减少,当误差降到给定的范围内,就可认为学习结束,学习结束后,神经网络模型就可用
|
|
|
|
<<<<<全文未完>>>>> 全文字数约2443字
|
要阅读全文请先注册成VIP会员!详情请阅读会员专区!
VIP会员可以阅读全文, 欢迎加入VIP会员专区! 加入VIP会员步骤如下:
注册用户名→在线购卡
|
|
|
|